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Abstract
The ultra-high sensitivity of the ferromagnetic resonance (FMR) technique has been fully
exploited to study the finite-size effects in the critical region near the ferromagnetic to
paramagnetic phase transition in Cr75−xFe25+x (x = 0, 5) thin films of high structural and
magnetic quality. Conclusive experimental evidence is provided for the validity of finite-size
scaling. Irrespective of the film thickness and composition, the critical exponents β , γ and ν for
spontaneous magnetization, initial magnetic susceptibility and spin–spin correlation length
retain their bulk values so that no dimensionality crossover occurs within the film thickness
range covered in the FMR experiments. The present results indicate that (i) like Cr75−xFe25+x ,
the previously studied Fe, Co, Ni, and CoNi3 thin films behave as itinerant-electron (band)
ferromagnets in which the isotropic long-range interactions between spins decay as
J (r) ∼ r−(d+σ ) (σ > 0), and (ii) the lattice dimensionality d , spin dimensionality m, and range
of spin–spin interactions (via the material-specific parameter σ ) decide the (non-universal)
values of the critical exponents.

1. Introduction

Thermodynamic properties near the magnetic phase transition
in a d-dimensional system (finite in one of the dimensions
and of infinite extent in the remaining d − 1 dimensions) has
captured the attention of theorists for a long time; see [1–3], for
reviews. However, this fascinating field became accessible to
experiments only recently, when advances in the preparation
techniques made it possible to grow high-quality ultrathin
films. In ferromagnetic (FM) systems of infinite size, the spin–
spin correlation length, ξ , diverges at the critical point TC(∞)

as ξ = ξo|ε|−ν , where ε = [T − TC(∞)]/TC(∞) and ν is
the critical exponent. The finite thickness t = na (where
a is a monolayer thickness or lattice spacing) of films limits
the divergence of ξ and thereby causes a thickness-dependent
shift in the critical temperature of a thin film of n monolayers
TC(n), with respect to TC(∞). Experimentally, one measures
the thickness-induced fractional shift in TC

εn = [TC(∞) − TC(n)]/TC(∞) = C/nλ′
(1)

with C a constant and λ′ the shift exponent. Finite-size scaling
theories [1–3] relate λ′ to the correlation length exponent
ν as λ′ = 1/ν. The exponent λ′ thus characterizes the

asymptotic critical behavior of thick films in the limit n →
∞. Thickness-dependent TC measurements [4–14] have shown
that equation (1) is obeyed in a variety of FM thin films but
λ′ ranges between 1.0 and 1.4, 0.94 and 1.44, 1.0 and 1.49,
and 1.4 and 1.6 for Fe [4–6], Ni [6, 8–11], CoNi3 [6, 12]
and Gd [6, 13, 14] thin films. Since these values of λ′
encompass the values λ′ = 1/ν = 1/0.7048 = 1.419,
λ′ = 1/0.6294 = 1.5884 and λ′ = 1/1.0 = 1.0 theoretically
predicted [15, 16] for the d = 3 isotropic nearest-neighbor
(nn) Heisenberg (d = 3, m = 3), d = 3 nn Ising (d = 3,
m = 1) and d = 2 nn Ising (d = 2, m = 1) models,
the basic issue of the universality class (represented by the
lattice dimensionality, d , and order parameter dimensionality,
m) to which each of these thin film systems belongs remains
unresolved. The knowledge of universality class is crucial
to understanding the nature and origin of magnetic order
present in a given system. The dispersion in the reported
values of λ′ can be traced back to the fact that equation (1)
has been fitted to the TC(n) data taken over a film thickness
range where the dimensionality crossover occurs (i.e., either
d or m or both change). Another important point to
note is that the universality class cannot be unambiguously
determined based on the value of a single critical exponent,
such as ν.
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Figure 1. Field (H ) dependence of the microwave power absorption
derivative (dP/dH ) at T � TC for the Cr70Fe30 thin films of
thickness t = 19, 45 and 480 nm. The continuous curves through the
data points (symbols) denote the theoretical lineshapes. The inset
displays representative small-angle x-ray scattering patterns.

To avoid complications due to the dimensionality
crossover effects in finite-size scaling analysis, we measured
TC(n) in ferromagnetic Cr75−x Fe25+x (x = 0, 5) thin films
because this alloy system, in the bulk itself, behaves as a
d = 2, m = 1 ferromagnet [17] in which the attractive
isotropic ‘long-range’ (ILR) interactions between spins decay
with distance (r ) as [18] J (r) ∼ r−(d+σ ) with σ = 1.4. We
provide a rigorous experimental proof for finite-size scaling in
Cr75−xFe25+x thin films and rationalize the λ′ values reported
for Fe, Co and Ni thin films in terms of a theoretical
model [18] for an itinerant-electron ferromagnet with ILR

spin–spin interactions of the form J (r) ∼ r−(d+σ ), whose
critical behavior near the ferromagnetic (FM)–paramagnetic
(PM) phase transition is characterized by non-universal critical
exponents that depend on the range of interactions between
spins through the material-specific parameter σ , which, in turn,
depends on n via the lattice dimensionality, d .

2. Synthesis, characterization and experimental
details

Cr75−x Fe25+x (x = 0, 5) thin films of nominal thickness
500, 80, 40, 20 and 8 nm were grown on 100 μm thick
glass substrates by 1 keV Ar ion-beam sputtering from a
2′′ × 2′′ target of composition Cr75Fe25 or Cr70Fe30 made out
of the starting materials Cr and Fe of 99.998% purity. The
temperature of the substrate (placed in a vacuum chamber
evacuated to ∼10−9 mbar before sputtering) was maintained
constant at 350 K. With an Ar gas pressure of 10−4 mbar
during sputtering, a typical deposition rate 1.0 Å s−1 was
achieved. During the growth process, the film thickness was
monitored by a quartz crystal oscillator. Before sputtering,
the targets were ion-beam milled to remove the surface
oxidation layer. No deviation from the nominal composition
within the uncertainty limits of ±0.1 at.% Cr or Fe could be
detected from the wavelength dispersive x-ray fluorescence
compositional analysis of thick films (t ∼ 0.5–1 μm). Wide-
angle (Cu Kα) x-ray diffraction patterns revealed that the films
are polycrystalline with body-centered-cubic structure (lattice
parameter a = 0.2875(5) nm) and have 〈110〉 texture along
the growth direction. Standard analysis of the small-angle x-
ray scattering (SAXS) data (Co Kα: λ = 1.7902 Å), shown
in the inset of figure 1, yielded the actual (mean) thickness
of the films as t = 480, 95, 45, 19 and 9.5 nm with a
surface roughness ∼=2% of t . Regular oscillations in the
SAXS data assert that the films are of high structural quality.
Representative atomic force micrographs (taken on the films of
thickness 95 and 480 nm), shown in figure 2, confirm this order
of surface roughness and columnar grain growth along the film
normal.

High-resolution ferromagnetic resonance measurements
(in which even a few Oersted shift in the resonance field could
be detected with ease) on thin films of composition Cr75Fe25

Figure 2. Typical atomic force micrographs for the Cr70Fe30 films with thickness 95 and 480 nm.

(This figure is in colour only in the electronic version)
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and Cr70Fe30 were performed in the critical region near the
FM–PM phase transition. To achieve high sensitivity even
in ultrathin metallic films, the standard practice [19, 20] of
mounting the films at the end-wall of a cylindrical microwave
cavity, which is coupled to a rectangular metallic waveguide,
was followed. The sensitivity of the ferromagnetic resonance
technique is primarily limited by the linewidth. For a linewidth
of 
Hpp(T ) ≈ 1 kOe, the detection limit is ≈1015 magnetic
moments, which corresponds to about 3 ML cm−2 [20].
A copper-constantan thermocouple was used to measure
temperature at the sample site.

In this paper, the results on Cr70Fe30 thin films alone
are presented since the films of composition x = 0 and
5 essentially yield identical results. The only exception
is figure 8, where the TC(n)/TC(∞) results for both the
compositions are presented.

3. Results and discussion

Identifying TC with the temperature at which a sharp peak in
χ ′′(T ) (the imaginary component of ac susceptibility) occurs,
dP/dH versus H curves (P denotes the microwave power
absorbed during the ferromagnetic resonance (FMR) process
and H the steady magnetic field, applied in the film plane) were
recorded on disc-shaped thin film samples, 5 mm in diameter,
at a fixed microwave field frequency of ν = 9.27 GHz in the
temperature intervals TC ± 1.5 K, TC ± 5 K and TC± 10 K at
�0.1 K, ∼=0.5 K and ∼=1 K steps, respectively. An elaborate
lineshape analysis [21], based on the Landau–Lifshitz–Gilbert
(LLG) equation of motion for magnetization

dM

dt
= −γ (M × Heff) + λ

γ M2(T )

(
M × dM

dt

)

− 2Aγ

M2(T )
(M × 
2M), (2)

closely reproduces the observed (dP/dH )–H curves, as
illustrated by figure 1, in which the continuous curves represent
the theoretical LLG lineshape and symbols the dP/dH versus
H data taken on the Cr70Fe30 thin films with t = 19 nm,
45 nm and 480 nm at T ∼= TC. The FMR lineshape analysis
determines accurately [21] the resonance field, Hres(T ), ‘peak-
to-peak’ FMR linewidth, 
Hpp(T ), magnetization, M(T ), and
the Landé splitting factor, g. In equation (2), M is the sum of
static and dynamic magnetizations; the effective field Heff =
H (applied static magnetic field) + h(t) (microwave field) +
Hdem(demagnetizing field)+HA (anisotropy field); M denotes
the component of magnetization along H ; γ = gμB/h̄ is
the gyromagnetic ratio; λ is the Gilbert damping parameter
and A is the exchange stiffness constant. In the present case,
Hdem = HA ≈ 0 and h(t) � H . The first term on the
right-hand side of equation (2) is the torque exerted by Heff on
M, whereas the second and third terms represent the torques
due to the Gilbert damping and the effective exchange field,
Hex = (2A/M2)∇2M. The latter two torques govern the
relaxation towards equilibrium. Hex does not point in the
direction of M because the finite penetration of the microwave
field makes the orientation of M non-uniform in the skin depth
of a ferromagnetic metal.

Figure 3. Linear variation of the ‘peak-to-peak’ FMR linewidth,

Hpp, with inverse magnetization, M−1. Arrows indicate the
relevant ordinate and abscissa scales.

Equation (2) yields 
Hpp(T ) as a sum of the contributions
arising from two-magnon scattering processes [22]
(grain–grain and/or grain-boundary two-magnon scattering
caused by local magnetic inhomogeneities), Gilbert damping
[23] 
HLLG(T ) = (2/

√
3)(λω/γ 2 M(T )), and the

exchange-conductivity (EC) mechanism [23] 
HEC(T ) =
(16π/3)(

√
A(T )ω/ρ(T )/c), where ρ and c respectively stand

for the electrical resistivity and velocity of light. As the
temperature is raised towards TC, M and exchange stiffness
A(T ) ∼ [M(T )]2 decrease (the rate of decline becomes
very steep as T → TC) and have a small magnitude at
T = TC, while resistivity, ρ, increases with temperature and
attains relatively large values at T ≈ TC. Consequently,
the LLG contribution, 
HLLG(T ) ∼ [M(T )]−1, is expected
to completely swamp the EC contribution, 
HEC(T ) ∼
M(T )/

√
ρ(T ), and essentially determine 
Hpp(T ) in a

narrow temperature range below TC. That this is indeed the
case in the range −10−2 � εt = [T − TC(t)]/TC(t) � −10−4

(the critical region) is demonstrated by the data presented in
figure 3. The slope = (2ω/

√
3γ 2)λ of the linear 
Hpp–M−1

plots (figure 3) permits an accurate determination of the Gilbert
damping parameter, λ. From the λ–(1/t) plot shown in
figure 4, it is evident that λ drops to nearly 50% of its bulk
value (0.42(1) × 108 s−1) at t = 480 nm, whereas from
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Figure 4. Gilbert damping parameter, λ, versus inverse thickness.

Figure 5. Linear variation of λ with (g − 2)2. The dotted curves
serve as a guide to the eye.

t = 480 to 9.5 nm λ drops by 73%. For T ≈ TC, spin–spin
interactions are expected to be weak with the result spin–lattice
interactions (via spin–orbit coupling) dominantly contribute
to damping and decide the Landé g factor. The assumption
that the spin–lattice relaxation is the sole damping mechanism
leads to the theoretical result [24]: λ ∼ (g − 2)2(�D/T )2 if
T � �D. Figure 5 shows that this proportionality between λ

and (g − 2)2 holds over a certain thickness regime. Outside
the critical region, the FMR linewidth is mainly governed
by the exchange-conductivity mechanism with the result that

Hpp(T ) ∼= 
HEC(T ), as is borne out by the dashed curves in
figure 6. As expected, the exchange-conductivity contribution
becomes increasingly important in thicker films so that the
LLG contribution governs 
Hpp(T ) over a larger temperature
range as the film thickness, t , decreases (figure 6).


Hpp is known to be extremely sensitive [25] to the
structural and magnetic quality of metallic thin films. The

Figure 6. 
Hpp(T ) in the temperature interval
−0.012 � εt � 0.005. The continuous and dashed curves depict the
temperature variations 
Hpp(εt) = a + b(−εt )

−β and

HEC(T ) ∼ M(T )/

√
ρ(T ).

narrowest FMR linewidths, ranging between 200 and 500 Oe,
have been observed [25] outside the critical region in
exceptionally high-quality films epitaxially grown under ultra-
high vacuum conditions. The finding that, depending upon
the film thickness, 
Hpp(T ) ranges between 270 and 440 Oe
(figures 3 and 6) at temperatures away from the peak testifies
to the high structural and magnetic quality of the investigated
films.

The sharp cusp in 
Hpp(T ) occurs at the same temper-
ature (∼=TC) at which χ ′′ peaks. Since the magnetization,
M(T, Hres), measured in the FMR experiment, does not dif-
fer appreciably from the spontaneous magnetization, MS(T ),
the relation 
HLLG(T ) ∼ [M(T )]−1, valid in the critical re-
gion, permits an estimation of the critical exponent β for the
order parameter, MS(T ), via its modified form 
Hpp(εt ) =
a + b(−εt)

−β . Optimum fits (continuous curves in figure 6) to
the 
Hpp(T ) data, based on this relation, yield β = 0.30(1)

irrespective of the film thickness, and TC(t) values that match
those deduced from χ ′′(T ) to within ±0.1 K.

Such estimates for the critical exponent β have to be
regarded as rough, since the peak value of the 
Hpp differs
from the back ground (270–440 Oe) by only 6–9 Oe. A weak
but sharp cusp in 
Hpp(T ) at T ∼= TC strongly indicates that
only a small fraction of the total number of spins is actually
participating in the FM–PM phase transition. To obtain highly
precise estimates for TC(t) and true asymptotic values of the
critical exponents β and γ for spontaneous magnetization
and initial magnetic susceptibility, we follow the approach
detailed elsewhere [26]. In this approach, Hres is identified
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Figure 7. (M/|εt |β ) versus (H/|εt |β+γ ) scaling plots. Note that the
outer (inner) ordinate scales correspond to the films of thickness 9.5,
95 and 480 nm (19 and 45 nm).

with the ordering field H conjugate to magnetization M and
consistent with the scaling equation of state (SES) mt =
f±(ht) (where mt ≡ M/|εt |β and ht ≡ H/|εt |β+γ are the
scaled magnetization and scaled field), and the M(T, H ) ≡
M(T, Hres) data, in the critical region, are made to fall [27] on
two universal curves, f− for εt < 0 and f+ for εt > 0, through
an appropriate choice of the parameters TC(t), β and γ . Next,
use is made of the ‘range-of-fit’ SES analysis in which more
and more of the data taken at temperatures away from TC(t)
are excluded from the mt –ht plot so that the exponents β and γ

become increasingly sensitive to the value of TC(t) and strong
departures [28] from the curves f−(ht ) and f+(ht ) occur if the
choice of β and γ differs even slightly from the correct one.
This procedure, thus, goes on refining [26–28] the estimates of
β and γ till their asymptotic values are reached.

The ln mt –ln ht plots for the Cr70Fe30 films in the
asymptotic critical region 2 × 10−4 � |εt | � 2 × 10−2 are
shown in figure 7. The asymptotic values β = 0.297(5), γ =
1.391(5) for the critical exponents β and γ , so determined, are
independent of film thickness and composition. In table 1, these
exponent values are compared with those reported [17, 29–31]
previously for Cr75Fe25 and Cr70Fe30 bulk samples and with
the theoretical estimates [32–34]1 for d = 2 or 3 ferromagnets
with either short-range exchange interactions [32, 33] or

1 The parameter σ is chosen such that the expression for the critical exponent
γ given in [18] yields a value (�1.39) close to that observed experimentally
and the remaining critical exponents are calculated by inserting the value of γ ,
so obtained, in the expression ν = γ/σ , and by using the scaling equalities
α = 2 − νd, β = (2 − α − γ )/2 and δ = 1 + (γ /β).

Figure 8. Finite-size scaling of the film thickness-dependent TC. The
dashed and dash–dotted curves represent the variations predicted by
the d = 3 Heisenberg and d = 3 Ising models, respectively.

isotropic long-range dipolar interactions [34] or isotropic long-
range (ILR) exchange interactions decaying with interspin
distance, r , as J (r) ∼ r−(d+σ ) with 0 < σ < 2. Another
theoretical result, which could have an important bearing, is
that the asymptotic critical exponents of a ferromagnetic model
on a simple cubic lattice with Ruderman–Kittel–Kasuya–
Yosida (RKKY) interactions are the same [35] as those of
the corresponding nearest-neighbor (short-range) model. The
comparison made in table 1 reveals the following. (a) Even
in thin films, the critical exponents β and γ retain their
bulk values. (b) Though the experimentally determined value
γ = 1.390(5) is fairly close to γ = 1.386(4) (γ = 1.372)
theoretically predicted for the d = 3 isotropic short-range
(ISR) Heisenberg (d = 3 isotropic dipolar) ferromagnet, the
observed value β = 0.298(5) lies far below the corresponding
theoretical estimate β = 0.365(2) (β = 0.381). (c)
The experimental values of the exponents β and γ do not
correspond to any known universality class but tally quite well
with the values1 β = 0.298 and γ = 1.392, predicted by the
renormalization group (RG) theory [18] for a d = 2, m = 1
ferromagnet with ILR interactions between spins of the form
J (r) ∼ r−(d+σ ) with σ = 1.4. Note that no choice of σ in
the permissible range (d/2) < σ � 2 for a d = 3, m = 3 or
d = 2, m = 2 or d = 3, m = 1 ferromagnet reproduces the
observed values of the critical exponents.

Previous determinations [6, 8–14] of the thickness-
induced shift in the TC of Fe, Co, Ni and Gd thin films have
revealed that the bulk value of TC is retained for thicknesses
down to ≈30 monolayers but TC drops rapidly when the thin
film thickness falls below 8–10 monolayers. In sharp contrast
with this usual behavior, in Cr75−x Fe25+x thin films, TC drops
to 57% (61%) of its bulk value [17] TC(∞) = 145.01(1) K
(TC(∞) = 256.00(1) K) at a thickness as large as t = 480 nm
or n � 1670 monolayers in the alloy with x = 0 (x = 5)
and, from a thickness of t = 480 to 9.5 nm or n = 33
monolayers, TC decreases by only ∼=41% (∼=22%). However,
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Table 1. Comparison between experiment and theory. Abbreviations: AA—asymptotic analysis; ACS—AC susceptibility; B—bulk;
BM—bulk magnetization; FMR—ferromagnetic resonance; FSS—finite-size scaling; MAP—modified Arrott plot analysis;
PC—polycrystalline; RG-φ4—renormalization group φ4 field theory; RG-ε—renormalization group epsilon (ε = 4 − d) expansion;
RG-ε ′—renormalization group epsilon (ε ′ = 2σ − d) expansion; SANS—small-angle neutron scattering; SC—single crystal; SES—scaling
equation of state analysis; t—thickness; TF—thin film.

Experiment/theory Reference Method β γ δ ν Remarks

Experiment
Cr75Fe25 [17] BM, MAP, SES 0.300(10) 1.390(10) 5.50(10) B, PC
Cr75Fe25 [29] ACS, AA 1.360(30) B, PC
Cr75Fe25 [30] ACS, SES 0.305(15) 1.330(60) 5.46(15) B, SC
Cr75Fe25 This work FMR, SES, FSS 0.298(4) 1.389(6) 1.07(8) TF, 9.5 nm � t � 480 nm
Cr75Fe25 [31] SANS 1.20(10) B, PC
Cr70Fe30 [17] BM, MAP, SES 0.315(5) 1.390(10) 5.36(4) B, PC
Cr70Fe30 [29] ACS, AA 1.390(30) B, PC
Cr70Fe30 [29] BM, MAP, SES 0.307(5) 1.390(10) 5.56(5) TF, t = 9.4 nm
Cr70Fe30 This work FMR, SES, FSS 0.297(5) 1.391(5) 1.04(8) TF, 9.5 nm � t � 480 nm

Theory
Short-range exchange:
J (r) ∼ e−r/b

d = 2, m = 1 [32] Onsager solution 0.125 1.75 15.0 1.0 Exact result
d = 3, m = 1 [15, 16, 33] RG-φ4 0.325(2) 1.241(2) 4.82(3) 0.630(2)
d = 3, m = 2 [15, 16, 33] RG-φ4 0.346(2) 1.316(3) 4.81(3) 0.669(2)
d = 3, m = 3 [15, 16, 33] RG-φ4 0.365(2) 1.386(4) 4.80(4) 0.705(3)
Isotropic long-range dipolar
d = 3, m = 3 [34] RG-ε 0.381 1.372 4.45 0.692
Isotropic long-range exchange:
J (r) ∼ r−(d+σ)

d = 2, m = 1, σ = 1.4 (See footnote 1) RG-ε ′ 0.298 1.392 5.67 1.00(1) Compare with
experimental values

d = 2, m = 2, σ = 1.325 (See footnote 1) RG-ε ′ 0.354 1.389 4.93 1.05(1)
d = 2, m = 3, σ = 1.285 (See footnote 1) RG-ε ′ 0.386 1.389 4.59 1.08(1)

when TC(n)/TC(∞) is plotted against 1/n (with n = t/a), as
shown in figure 8, equation (1), represented by the continuous
line, closely reproduces the TC(n) data over the thickness range
extending from n = 33 (t = 9.5 nm) to n = 1672 (t =
480 nm), with λ′ = 0.93(7) and λ′ = 0.96(7) or, equivalently,
ν = 1.07(8) and ν = 1.04(8) for the alloys with x = 0 and
x = 5, respectively. By comparison, the d = 3, m = 3 (dashed
curves) and d = 3, m = 1 (dotted curves) short-range models
fail to describe the observed variations of TC(n)/TC(∞) with
1/n. The values ν = 1.07(8) and 1.04(8) compare very well
with ν = 0.99(1), obtained from the relation [18] ν = γ /σ

when the values γ = 1.391(5) and σ = 1.4 are used, and
also with the value ν = 1.2(1) determined from the small-
angle neutron scattering [31] data on bulk Cr75Fe25. A perfect
agreement between the values of the critical exponents β , γ

and ν for the Cr75−x Fe25+x (x = 0, 5) alloys in the bulk
and thin film forms, and between the currently determined
and theoretically predicted exponent values for the d = 2,
m = 1 ferromagnet with interspin interactions of the form
J (r) ∼ r−3.4, asserts that, even in the bulk, long-range
ferromagnetic order is sustained by such long-range spin–spin
interactions. A steep drop in TC and λ from their bulk values
as the film thickness reduces to t = 480 nm basically reflects
diminished spin–spin interactions due to lesser neighbors for
a given spin in the ramified spin network of reduced spatial
dimensionality [17] of d � 2. This inference is consistent
with the earlier deduction from the cusp in 
Hpp(T ) that only
a small fraction of spins is involved in the FM–PM phase
transition.

In order to understand why even for the bulk Cr75−xFe25+x

(x = 0, 5) alloys the lattice dimensionality is 2 rather
than 3, we need to draw upon the well-documented
magnetic phase diagram [36] of the bulk Cr100−cFec system,
determined by small-angle neutron scattering (SANS), low-
field magnetization (LFM) and ac susceptibility (ACS).
According to this phase diagram, Cr100−cFec alloys exhibit
itinerant antiferromagnetism, spin glass behavior and itinerant
ferromagnetism in the Fe concentration regimes c � cAF

∼=
16 at.%, 16 at.% � c � 19 at.% and c � cFM

∼= 20 at.%.
SANS results provided a direct evidence for a slow evolution of
a homogeneous ferromagnetic (FM) order from an extremely
inhomogeneous (non-collinear) FM order near cFM (the critical
concentration for the appearance of FM order) as c is increased
from cFM; a long-range collinear FM order emerged only for
c > 30 at.% Fe. These observations found a qualitative
interpretation in terms of a percolation model [36] in which the
spin system below TC is perceived as an infinite FM percolating
cluster coexisting with finite clusters. For c ≈ cFM

∼= 20 at.%
Fe a large fraction of spins (magnetic moments) belong to finite
clusters, but as the Fe concentration is increased, more and
more of the spins become part of the infinite cluster. This
trend was corroborated by the intensification of the critical
scattering peak, reflecting the growth of the infinite cluster, and
by the concomitant reduction in the low-temperature scattering
(associated with the finite cluster response in the re-entrant
state, where the long-range FM order coexists with the spin
glass order). Our earlier LFM and ACS results [17] on
bulk Cr75Fe25 and Cr70Fe30 alloys are consistent with this
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Figure 9. Finite-size scaling of the film thickness-dependent
magnetization.

percolation description [17, 27]. Since these compositions are
not far enough from the percolation threshold cFM

∼= 20 at.%,
the infinite cluster, which disorders at TC, has an extremely
ramified structure and hence behaves as a d = 2 spin system
rather than d = 3. Note that a highly ramified infinite spin
network needs a long-range interaction such as ILR interaction
between spins of the form J (r) ∼ r−(d+σ ) with σ = 1.4 to
sustain long-range ferromagnetic order.

A more stringent test for the validity of the finite-
size scaling theory is provided by the requirement that the
magnetization of thin films of varied thickness, n, should scale
in accordance with the relation [1–3]

M(n, εn) = n−β/νg±(n1/νεn) (3)

where εn = [T − TC(n)]/TC(n) and the plus and minus
signs refer to temperatures above and below TC(n). That
this is indeed the case is demonstrated by the nβ/ν M(n, εn)–
n1/νεn plot (shown in figure 9), constructed using the currently
determined values of M(n, T ), TC(n), β(=0.297(5)) and
ν(=1.04(8)). Note that there are no adjustable parameters in
this scaling plot. The nβ/ν M(n, εn)–n1/νεn plots in figure 10
serve to illustrate the extreme sensitivity of the finite-size
scaling of magnetization to the choice of β and ν. Figure 10
clearly demonstrates that the finite-size scaling breaks down
completely (i) for the d = 3 isotropic short-range (ISR)
Heisenberg values β = 0.365 and ν = 0.705 (top panel) or
even for the d = 3 short-range Ising values (not shown), and
(ii) when either β or ν differs even slightly from the optimum
choice of β = 0.297 or ν = 1.04. In an attempt to rationalize
the previously reported [4–12] values of λ′ for the Fe, Co, Ni
and CoNi3 thin films, cognizance has to be taken of the long-
range nature [37] of spin–spin interactions in these itinerant-
electron ferromagnets. One such attempt made recently [6]
uses the mean-field (MF) approximation and introduces a cut-
off range, N0, of the spin–spin interactions at which a crossover
from the power law, εn ∼ n−λ′

(with λ′ = 1) for n � N0, to
linear behavior, εn ∼ n for n < N0, occurs. Though this
approach adequately describes the observed εn(n), it yields MF

Figure 10. Breakdown of the finite-size scaling of magnetization for
the values of β and ν that differ slightly from the optimum choice
β = 0.297 and ν = 1.04.

critical exponents that are in serious conflict [4, 5, 7–10, 12]
with the experimental findings. In an attempt to resolve this
contradiction, we take recourse to the renormalization group
(RG) calculations [18] on a (d , m) spin system with isotropic
long-range (ILR) interactions of the form (J∞/rd+σ )S0·Sr that
predict the following. (i) ILR interactions render the d = 3
Heisenberg fixed point unstable and lead to a crossover [18]
to a new fixed point, which is characterized by non-universal
critical exponents that depend on σ when (d/2) < σ < 2.
(ii) The short-range critical behavior (essentially determined
by d and m) prevails for all d when σ > 2. In a previous
work [38], it has been shown that in the bulk form Ni is the
experimental realization of case (i) with [38] d = 3, m = 3
and σ = 1.91. Considering Ni thin films with 7 � n � 20 as a
spin system with d = 3, m = 1 and σ = 1.91, the expression
for the exponent γ and the relation ν = γ /σ given in [18] yield
γ = 1.23 and ν = 0.64 for such a system. Using these values
in the scaling relations α = 2−νd and β = (2−α−γ )/2 gives
the specific heat critical exponent α = 0.07 and β = 0.35.
These values compare well with ν = 0.71(6) and β = 0.32(6)

reported [8] in the above-mentioned thickness range for Ni thin
films. The above calculations, when repeated for the choice
d = 3, m = 3 and σ = 1.9, yield the critical exponent values
γ = 1.331, ν = 0.701, α = −0.102, β = 0.385 and δ = 4.45.
These values match quite well with the most accurate [27]
experimental estimates γ = 1.333(1), β = 0.389(5) and
δ = 4.35(5) reported [39] for bulk Fe so far. In the limit
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n → 1, d → 2, σ → 2.91 (2.9) in the exponent (d + σ) =
4.91(4.9) of the power law J (r) ∼ r−(d+σ ) for Ni (Fe). Since
σ > 2, case (ii) should apply for both Ni and Fe monolayer
films. Consistent with this prediction, a short-range d = 2
Ising critical behavior has been observed in Ni [8] (Fe [4]) thin
films with n � 4 (n � 1). The same arguments, albeit with a
different value of σ , hold for Co and CoNi3 thin films [7, 12]
as well. By contrast, long-range Ruderman–Kittel–Kasuya–
Yosida and dipole–dipole interactions couple the localized 4f
magnetic moments in Gd metal [40] and lead to the sequence of
crossovers: uniaxial dipolar → isotropic dipolar → Gaussian,
as the temperature is raised from T = TC. Studies [13, 14, 41]
on the thickness-induced shift in TC, and changes in the critical
behavior near TC, in Gd thin films reveal a crossover from d =
3 to 2 short-range Ising critical behavior as the film thickness
reduces from 27 monolayers to �1 monolayer. Thus, Gd thin
films have to be treated on a different theoretical footing.

4. Summary and conclusion

The validity of the finite-size scaling involving the thickness-
induced shift in Curie temperature as well as thickness-
dependent magnetization has been demonstrated in high-
quality Cr75−x Fe25+x (x = 0, 5) thin films. A sharp cusp in
the FMR linewidth at T = TC marks the ferromagnetic (FM)
to paramagnetic (PM) phase transition even in the film of least
thickness. Critical exponents β , γ and ν, characterizing the
FM–PM transition, retain their bulk values β = 0.297(5),
γ = 1.391(5) and ν = 1.05(8), irrespective of the film
thickness and composition so that no dimensionality crossover
occurs in the film thickness range covered in the present
experiments. These critical exponent values conform very well
with those [17] (β = 0.298, γ = 1.392 and ν = 1.0)
predicted by the renormalization group (RG) theory [18] for
a d = 2, m = 1 ferromagnet in which the isotropic long-
range interactions between spins decay as J (r) ∼ r−(d+σ ) with
σ = 1.4. The RG calculations [18] are shown to provide a
consistent theoretical basis for the previously reported results
on the finite-size effects in itinerant-electron ferromagnets
such as Fe, Co and Ni thin films. The Gilbert damping
mechanism, responsible for the observed FMR linewidth in
a narrow temperature range within the critical region, in the
present case, has its origin in the spin–lattice relaxation.
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